Researchers Develop Novel Method to Grow Elastic Diamonds

coherentnews

Researchers developed a novel method to grow elastic diamonds, according to a study conducted on May 27, 2018.

This study was conducted by the researchers at the Ulsan National Institute of Science and Technology (UNIST). They found that brittle diamonds can be bent and stretched elastically when made into ultrafine needles. According to the researchers, the nanoscale diamond needles could flex and stretch by as much as nine percent without breaking and then, could return to its original shape. This discovery completely proves the previous theories wrong, which says that diamonds are brittle. The results of this study might lead to unprecedented possibilities for tuning its optical, optomechanical, magnetic, phononic, and catalytic properties through elastic strain engineering.

The ordinary diamonds can stretch less than one percent only. Professor Ming’s group handled the chemical calculation and the analysis of the crystal structure of diamond and ascribed that the ultrahigh elasticity of the diamond nanoneedles is due to the paucity of internal defects and the relatively smooth surface. Professor Feng Ding said, “Diamonds, either natural or artificial, have internal defects in their crystal structure. When outside force is applied to these defects, they can crack and eventually break.”

Researchers conducted detailed simulations to determine how much stress and strain the diamond needles could accommodate without breaking. It was found that the corresponding maximum local stress was close to the known theoretical limit achievable with a perfect, defect-free diamond. Also, the defect-free diamonds can stretch by, as much as 12% without breaking. The nanoscale diamond needles were successfully fabricated by plasma-induced etching of diamond thin films deposited on Si substrates through bias-assisted chemical vapor deposition (CVD). This enabled them to demonstrate the ultralarge, fully reversible elastic deformation of nanoscale (~300 nanometers) single-crystalline and polycrystalline diamond needles.

Furthermore, researchers are expecting that their findings could lead to performance enhancement in applications, involving bioimaging and biosensing, strain-mediated nanomechanical resonators, drug delivery, data storage, and optomechanical devices, as well as ultrastrength nanostructures.

You may be interested

Global Hospital Beds Market Summit to Showcase New Innovations from Leading Manufacturing and Pharmaceutical Experts 2026
Healthcare
Healthcare

Global Hospital Beds Market Summit to Showcase New Innovations from Leading Manufacturing and Pharmaceutical Experts 2026

Albert R - November 19, 2018

Hospital Beds Market research report 2018, is mostly driven by the improved taking on of Hospital Beds across small- and medium-sized enterprises. worldwide Hospital Beds Market quantifying…

Prosthetic Legs Market Growth Opportunities, Sales, Revenue, Industry Analysis and Forecast
Business
Business

Prosthetic Legs Market Growth Opportunities, Sales, Revenue, Industry Analysis and Forecast

Albert R - November 19, 2018

According to the Centers for Disease Control and Prevention (CDC), in 2012, there were around 1.9 million people in the U.S. without natural limbs. Also, according to…

Medical Adhesives and Sealants Market to Witness Robust Expansion by 2026
Healthcare
Healthcare

Medical Adhesives and Sealants Market to Witness Robust Expansion by 2026

Albert R - November 19, 2018

Medical Adhesives and Sealants Market research report 2018, is mostly driven by the improved taking on of Medical Adhesives and Sealants across small- and medium-sized enterprises. worldwide…

Most from this category